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Polymer networks formed by cross-linking flexible polymer chains are ubiquitous in many natural and synthetic
soft matter systems. Current micromechanics models generally do not account for excluded volume interactions
except, for instance, through imposing a phenomenological incompressibility constraint at the continuum-scale.
This work aims to examine the role of excluded volume interactions on the mechanical response.

The approach is based on the framework of the self-consistent statistical field theory of polymers, which
provides an efficient mesoscale approach that enables the accounting of excluded volume effects without the
expense of large-scale molecular modeling. A mesoscale representative volume element is populated with
multiple interacting chains, and the macroscale nonlinear elastic deformation is imposed by mapping the end-
to-end vectors of the chains by this deformation. In the absence of excluded volume interactions, it recovers
the closed-form results of the classical theory of rubber elasticity. With excluded volume interactions, the
model is solved numerically in 3-dimensions using a finite element method to obtain the energy, stresses, and
linearized moduli under imposed macroscale deformation. Highlights of the numerical study include: (1) the
linearized Poisson’s ratio is very close to the incompressible limit without a phenomenological imposition of
incompressibility; (2) despite the harmonic Gaussian chain as a starting point, there is an emergent strain-
softening and strain-stiffening response that is characteristic of real polymer networks, driven by the interplay
between the entropy and the excluded volume interactions; and (3) the emergence of a deformation-sensitive
localization instability at large excluded volumes.

1. Introduction
A wide variety of soft-matter based systems are emerging as important for engineering and scientific applications, and have been
the focus of research using both modeling and experiments, e.g. [1–32]. Polymer-network based materials such as elastomers
and hydrogels are often at the heart of these soft-matter systems.

An important question for both fundamental understanding and application is to predict the nonlinear elastic properties of
polymer networks starting from a micromechanical model of individual chains. The physics of polymer network elasticity
is governed by the conformational entropy of polymer chains and the inter-segment excluded volume interactions. These
contributions can be roughly thought of as short-range and nonlocal interactions respectively. The short-range interactions are
associated with Gaussian polymer chain response and depend on the relative configurations of adjacent segments in a chain. In
contrast, the nonlocal interactions are due to the interaction between polymer segments that are nearby in space but nonlocal
topologically (i.e., in terms of their position along the chain (Fig. 1)).

While there are several useful phenomenological nonlinear elastic frame-indifferent models, e.g. Mooney-Rivlin [33], Ogden
[34] and Gent [35], they lack a clear connection to the molecular structure of polymer network. An important class of physics-
based approaches to study the elasticity of polymer networks are based on considering multiple Gaussian chains and then
averaging over the chains in different ways. These include the 3-chain model by James and Guth [36], the 4-chain model
by Flory and Rehner [37] and Treloar [38], the affine full-network model by Treloar [39], the 8-chain model by Arruda and
Boyce [40], the non-homogeneous deformation based model by Wu and van Der Giessen [41], and the non-affine microsphere
model by Miehe [42]; the recent work by Grasinger [43] provides a new perspective in which these myriad models are shown
to be special cases of a general approach. While these models have provided important insights and prediction, they do not
account for the nonlocal excluded volume effects. Consequently, incompressibility of the polymer network must be added as a
phenomenological continuum-scale approximation of the missing mesoscale physics. Another class of physics-based molecular-
statistical approaches are the constrained junction and constrained segment theories, that aim to account for constraints arising
due to chain entanglements. Constrained junction theories, e.g. [44–48], apply topological constraints on the fluctuations of
chain cross-link junctions. Constrained segment theories, e.g. [49–53], which are consistent with the tube model of rubber
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elasticity, incorporate constraints on the polymer segments along the chain contour. However, it is not easy to incorporate the
nonlocal excluded volume interactions in these approaches.

Figure 1. Excluded volume interactions are nonlocal in terms of the segment coordinates.

1.A. The Proposed Approach
Our approach is composed of 2 key elements: first, the statistical field theory of polymers which provides an established and
efficient approach to account for the physics of polymer chain elasticity as well as excluded volume interactions [54–70]; and,
second, the use of the 8-chain network averaging model that provides a nonlinearly-elastic frame-indifferent approach to coarse-
grain to the continuum scale [40]. An important work in this direction is [71], wherein a network with a simplified square lattice
topology was studied using the field theory approach to understand copolymers.

We begin by considering a representative volume element (RVE) of the polymer network. A typical mesoscale RVE consists
of several polymer chains that are all interacting with configurations that are randomly distributed. While it is a significant
challenge to account for this randomness, we follow the 8-chain RVE-averaging approach of Arruda and Boyce (Fig. 2, [40]) in
approximating the RVE in the undeformed state as composed of 8 polymer chains connecting the center of a cube to each of the
corners. The RVE then deforms under the action of the macroscopic deformation tensor F , i.e., the chain end-to-end vectors are
mapped by F from the undeformed to the deformed state (Fig. 3, [72]). An important element of [40] is that the RVE is oriented
such that the cube is oriented along the principal directions of the stretch tensor U , where U is the tensor square root of F , and
can be obtained through the polar decomposition F = RU where R ∈ SO(3).

Given the mapping of the end-to-end vectors of the chains, the polymer field theory is then used to compute the partition
function of the deformed state, from which we can find the free energy and stress. Following [59], we use the continuous Gaussian
chain model for a single polymer chain. Next, we consider chain segments that interact pairwise in real-space – and nonlocally
in terms of position along the chain contour (Fig. 1) – through a pairwise interaction potential of mean force; these are given by
Dirac potentials to model excluded volume effects. Given the inter-segment interaction and end-to-end vectors, the framework
of polymer field theory enables us to compute, using the self-consistent scheme, the partition function and consequently the free
energy of the RVE. We notice that because the ends of the polymer chain are constrained by the macroscale deformation F , this
leads to a restricted ensemble. Further, nonlinear elasticity provides the Piola-Kirchoff stress tensor P as the energy-conjugate
of F , enabling us to compute the stress-deformation response of the polymer network.

Key results from the model are as follows. In the absence of excluded volume interactions, we find that the closed-form
orientationally-averaged elastic response matches with classical rubber elasticity [72]. Considering excluded volume interactions,
closed-form solutions appear impossible, and we develop a 3-d finite element method (FEM) implementation to self-consistently
solve the equations of the polymer field theory. We find that the linearized Poisson’s ratio ν ≃ 0.4943, which is very close to
the incompressible limit ν → 0.5, without a phenomenological imposition of incompressibility, and that the elastic moduli are
in line with typical polymer network gels. Further, despite the harmonic Gaussian chain as a starting point, there is an emergent
strain-softening and strain-stiffening response that is characteristic of real polymer networks, driven by the interplay between the
excluded volume interactions and the entropy; it does not require chains with limiting extensibility – such as the inverse Langevin
approximation – to model this behavior. Finally, we find the emergence of a deformation-sensitive localization instability at large
values of the excluded volume parameter.

Structure of the Paper.Section 2 formulates the model. Section 3 summarizes the finite element approach for the self-consistent
solution. Section 4 presents numerical results showing the predictions of the model.
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(a) Schematic of a polymer network. (b) The 8-chain approximation.

Figure 2. The 8-chain approximation is obtained by averaging over a volume element that aligns the polymer chains along the principal
directions of the deformation.

Figure 3. The end-to-end vector in the undeformed state,
(
X1

α −X0
α

)
, is mapped by the deformation F to the end-to-end vector in the

deformed state, x1
α − x0

α, i.e., x1
α − x0

α = F
(
X1

α −X0
α

)
.

2. Model Formulation
2.A. Deformation of a Single Polymer Chain
We use the Continuous Gaussian Chain model for a single polymer chain [58]. In the undeformed state, the coarse-grained
trajectory of the α-th polymer chain is represented as a continuous 3-d space curveRα(s), where s is the chain contour coordinate
and varies along the chain contour, and is scaled such that 0 ≤ s ≤ 1. The position vectors of the beginning and end points of
the chain in the undeformed state are X0

α and X1
α.

The chain is deformed under the deformation gradient F . In the deformed state, rα(s) is a 3-d curve that represents the
coarse-grained trajectory of the α-th chain, as shown in Figure 4. The position vectors of the beginning and end of the chain in
the deformed state are x0

α and x1
α.

Following [72], we use that the chain end-to-end vector is mapped under the macroscale deformation F :

x1
α − x0

α = F
(
X1

α −X0
α

)
(2.1)

We note that the affine deformation assumption depends strongly on the assumption that there are no entanglements [73–76].
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Figure 4. Single polymer chain fixed at both ends.

2.A.1. Partition Function and Average Segment Density

Consider the α-th chain that consists of N coarse-grained polymer segments each of length a, and under the influence of a field
w(x) that will be used to account for the excluded volume interactions [59].

From [58], the partition function, Qα[w;F ], and the average segment density, ⟨ρ̂α(x;F )⟩, are:

Qα[w;F ] =
1

V

∫
dx qα(x,x

0
α, s) q

∗
α(x,x

1
α, 1− s), (2.2)

⟨ρ̂α(x;F )⟩ = 1

V Qα[w;F ]

1∫
0

ds qα(x,x
0
α, s) q

∗
α(x,x

1
α, 1− s). (2.3)

Here, qα(x,x0
α, s) and q∗α(x,x

1
α, 1− s) are the partial partition functions for the two chain fragments, one from 0 to s and the

other from 1 to s, respectively, as shown in Figure 4.
qα(x,x

0
α, s) is obtained by solving the following PDE with the initial condition:

∂qα(x,x
0
α, s)

∂s
=

a2N

6
∇2qα(x,x

0
α, s)− w(x)qα(x,x

0
α, s), qα(x,x

0
α, s)

∣∣∣
s=0

= (aN1/2)3 δ(x− x0
α). (2.4)

Similarly, q∗α(x,x1
α, s

′) is obtained by solving the same PDE as in (2.4), but with the initial condition corresponding to keeping
the other end fixed:

∂q∗α(x,x
1
α, s

′)

∂s′
=

a2N

6
∇2q∗α(x,x

1
α, s

′)− w(x)q∗α(x,x
1
α, s

′), q∗α(x,x
1
α, s

′)
∣∣∣
s′=0

= (aN1/2)3 δ(x− x1
α). (2.5)

The initial conditions above correspond to the physical constraint that the beginning and end points of the α-th chain are fixed
at the given spatial positions x0

α and x1
α, respectively.

2.A.2. Reduction to Classical Rubber Elasticity

In the absence of excluded volume interactions, obtained by setting w(x) ≡ 0, we can find closed-form solutions for qα and q∗α:

qα(x,x
0
α, s) =

(
3

2πs

)3/2

exp

(
−3|x− x0

α|2

2a2Ns

)
, (2.6)

q∗α(x,x
1
α, 1− s) =

(
3

2π(1− s)

)3/2

exp

(
− 3|x− x1

α|2

2a2N(1− s)

)
. (2.7)
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The partition function Qα[w;F ]
∣∣∣
w=0

in (2.2) evaluates to the classical Gaussian distribution in 3-d:

Qα[w;F ]
∣∣∣
w=0

∝
(

3√
π

)3(
a2N

6

)3/2

exp

(
− 3

2a2N
|x1

α − x0
α|2
)
. (2.8)

Because the chains do not interact, the free energy of the α-th polymer chain, Hα, is obtained from Qα using Hα =
−kBT logQα to be:

Hα[w;F ]
∣∣∣
w=0

=
1

2

(
3kBT

a2N

) ∣∣F (X1
α −X0

α

)∣∣2 − (3kBT

2

)
. (2.9)

To account for the fact that chains are randomly oriented, we next average Hα[w;F ]
∣∣∣
w=0

over all possible orientations of the
chain end-to-end vector by integrating (2.9) over all orientations. That is, keeping F fixed, we integrate

(
X1

α −X0
α

)
over the

sphere of appropriate radius. The resulting expression for the orientationally-averaged free energy, Havg
α [w;F ]

∣∣∣
w=0

, is:

Havg
α [w;F ]

∣∣∣
w=0

=
kBT

2

(
tr(F TF )− 3

)
. (2.10)

This result recovers the classical rubber elasticity result [72], also known as the incompressible Neo-Hookean elastic strain
energy.

2.B. Deformation of the Polymer Network
The pairwise excluded volume interactions are introduced through the fieldw(x) following [59]. We introduce ū(|x−x′|), which
is the pairwise interaction potential of mean force for two segments located at spatial coordinates x and x′. The corresponding
partition function for the polymer network in the deformed state, Z(F ) in the field-theoretic setting is:

Z(F ) ∝
∫

Dρ

∫
Dw exp

(
−H[w, ρ;F ]

kBT

)
, (2.11)

where H[w, ρ;F ] is the effective Hamiltonian of the polymer network, and has the expression:

H[w, ρ;F ]

kBT
= −

∫
dx w(x)ρ(x) +

1

2kBT

∫
dx

∫
dx′ ρ(x) ū(|x− x′|) ρ(x′)− log (Q1[w;F ] . . . Qn[w;F ]) . (2.12)

The auxiliary fields w(x) and ρ(x) are interpreted as the fluctuating chemical potential field generated internally because of
the inter-segment interactions and the fluctuating density of the polymer network, respectively [59]. Qα[w;F ] is the partition
function for the α-th chain in the polymer network under the influence of w(x), and is calculated using (2.2).

The first term in (2.12) is the energy of interaction between the density and the chemical potential. The second term is the
inter-segment interaction energy. The third term is the entropic contribution due to chain stretching. The total Helmholtz free
energy of polymer network in the deformed state, H(F ), is evaluated from the partition function Z(F ) in (2.11) using:

H(F ) = −kBT logZ(F ). (2.13)

In the deformed state, the average segment density of the polymer network, ⟨ρ̂(x;F )⟩, is obtained as:

⟨ρ̂(x;F )⟩ ∝ 1

Z(F )

∫
Dρ

∫
Dw

[
exp

(∫
dx w(x)ρ(x)− 1

2kBT

∫
dx

∫
dx′ρ(x)ū(|x− x′|)ρ(x′)

)
 n∑

i=1


 1∫

0

ds qi(x,x
0
i , s) q

∗
i (x,x

1
i , 1− s)

 n∏
k=1
k ̸=i

Qk[w;F ]


]. (2.14)

2.C. Strain Energy Density of the Polymer Network
To obtain the continuum elastic response using nonlinear elasticity, we introduce the elastic energy density (per undeformed unit
volume) W (F ) and treat the RVE as a continuum material point. This allows us to connect the total free energy H(F ) evaluated
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for the RVE to W (F ) at the corresponding spatial location:

W (F ) =
H(F )

V
, (2.15)

where V is the volume of the RVE in the undeformed state.
We can then find the Piola-Kirchhoff stress tensor P and the fourth-order elasticity tensor C = [Cijkl] using:

P =
∂W

∂F
, (2.16)

Cijkl =
∂2W

∂Fij∂Fkl

∣∣∣∣∣
F=I

, (2.17)

where I is the second-order identity tensor.
Applying (2.16), and substituting from (2.11), (2.12), (2.13), (2.15), we have:

P =
∂W

∂F
= −kBT

V

1

Z(F )

∂Z(F )

∂F
= −kBT

V

1

Z(F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ;F ]

kBT

)
∂H[w, ρ;F ]

∂F

(
− 1

kBT

)
=− kBT

V

1

Z(F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ;F ]

kBT

) n∑
α=1

∂

∂F
logQα[w;F ].

(2.18)

Then, defining the stress operator for the α-th chain, P̂α, as:

P̂α := − ∂

∂F
logQα[w;F ], (2.19)

we can write P as the statistical average [58, Section 4.1.3] of P̂α:

P =
kBT

V

(
1

Z(F )

∫
Dρ

∫
Dw exp

(
−H[w, ρ;F ]

kBT

) n∑
α=1

P̂α

)
=

kBT

V

n∑
α=1

⟨P̂α⟩. (2.20)

2.D. Mean-field Assumption

The functional integration over the fields w and ρ in (2.11) and (2.14) makes it expensive to evaluate H(F ) and ⟨ρ̂(x;F )⟩.
Therefore, it is common to use a mean-field assumption to simplify the functional integration in the expression for Z(F ) in
(2.11) [58]. This assumption implies that functional integration over the fields w and ρ is dominated by the mean-fields w̄ and ρ̄,
respectively. The mean-fields w̄ and ρ̄ are obtained by requiring the effective Hamiltonian H[w, ρ;F ] in (2.12) to be stationary
with respect to variations in w(x) and ρ(x). This gives the self-consistent mean-field conditions:

δH[w, ρ;F ]

δw

∣∣∣
w=w̄

= 0, (2.21)

δH[w, ρ;F ]

δρ

∣∣∣
ρ=ρ̄

= 0. (2.22)

Using the mean-field assumption, Z(F ) in (2.11) simplifies to:

Z(F ) ≈ exp

(
−H[w̄, ρ̄;F ]

kBT

)
, (2.23)

where, H[w̄, ρ̄;F ] is the effective Hamiltonian in (2.12) evaluated using the mean-fields w̄ and ρ̄. Using (2.13) and (2.23), the
total free energy of polymer network, H(F ) under the mean-field assumption is:

H(F )

kBT
= −

∫
dx w̄(x)ρ̄(x) +

1

2kBT

∫
dx

∫
dx′ ρ̄(x) ū(|x− x′|) ρ̄(x′)− log (Q1[w̄;F ] · · ·Qn[w̄;F ]) . (2.24)
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Further, the average segment density, ⟨ρ̂(x;F )⟩, in (2.14) simplifies to:

⟨ρ̂(x;F )⟩ ≈
n∑

α=1

⟨ρ̂α(x;F )⟩
∣∣∣
w=w̄

, (2.25)

where ⟨ρ̂α(x;F )⟩ is the average segment density of the α-th chain in the polymer network, obtained using (2.3).

2.E. Excluded Volume Interaction
Polymer segments in the network are considered to interact with each other according to a pairwise interaction potential of mean
force ū whose physical origin is due to excluded volume effects. We account for the excluded volume effects by modeling a
pairwise inter-segment interaction using a simple Dirac delta potential of mean force [57, 77]:

ū(|x− x′|) = kBT u0 δ(|x− x′|). (2.26)

where u0 is the excluded volume parameter. This form of inter-segment interaction potential assumes the presence of a solvent
in the polymer network system with low density [49, 57]. The solvent mediates the interactions among polymer segments. For
u0 > 0, implying repulsion between the segments, the excluded volume potential ū in (2.26) is positive-definite and has an
inverse; following [58], this simplifies the field theory equations in (2.11) to:

Z(F ) ∝
∫

Dw exp

(
−H[w;F ]

kBT

)
, (2.27)

where H[w;F ] is the effective Hamiltonian of polymer network in the simplified field theory:

H[w;F ]

kBT
=

1

2u0

∫
dx (w(x))2 − log(Q1[w;F ] · · ·Qn[w;F ]). (2.28)

Equations (2.27) and (2.28) present the simplified field theory for the deformation of polymer network that is used in this work.
The partition function in (2.27) is evaluated using the mean-field assumption as:

Z(F ) ≈ exp

(
−H[w̄;F ]

kBT

)
, (2.29)

where H[w̄;F ] is the effective Hamiltonian in (2.28) evaluated using the mean-field w̄. The mean-field w̄ is obtained by solving
the stationarity condition for the effective Hamiltonian H[w;F ]:

δH[w;F ]

δw

∣∣∣
w=w̄

= 0. (2.30)

For the assumed form of the excluded volume interaction potential as in (2.26), there is alternatively an expression for the
average segment density [58]:

⟨ρ̂(x;F )⟩ = 1

u0
⟨w(x)⟩ = w̄(x)

u0
(2.31)

where ⟨w(x)⟩ is the statistical average of the fluctuating field w(x), and we use that under the mean-field assumption ⟨w(x)⟩ =
w̄(x). Finally, using (2.29) and (2.13), we obtain the total free energy of polymer network, H(F ) for the simplified field theory
as:

H(F )

kBT
=

1

2u0

∫
dx(w̄(x))2 − log(Q1[w̄;F ] · · ·Qn[w̄;F ]), (2.32)

where w̄(x) is obtained by self-consistently solving (2.31) and the mean-field condition in (2.30).

2.F. Representative Volume Element Averaging: 8-Chain Model
A typical polymer network consists of a large number of cross-linked polymer chains (Fig. 2) with random orientations at each
continuum point, and is very challenging to directly solve. To simplify this problem, we adopt the 8-chain model for the RVE
[40]. The 3-d RVE is assumed to be a cube in the undeformed configuration, with 8 chains running between the center and each
of the corners. The cube is assumed to be oriented along the principal directions of the macroscale right stretch tensor U , where
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U is the tensor square root of the deformation F or alternatively is the positive-definite part of the right polar decomposition of
F .

We assume that each chain begins (s = 0) at the center of the cube which is also taken to be the origin, and the chains terminate
(s = 1) at the corners. Denoting the terminating point of the chains in the undeformed and deformed state, respectively, by
X1

1 , . . .X
1
8 and x1

1, . . .x
1
8, the relation between the end-to-end vectors in the undeformed and deformed configurations from

(2.1) is:

x1
α = F X1

α, α = 1, . . . 8. (2.33)

For a given value of F , the right stretch tensor U is used to orient the cube, and the equation above provides the initial conditions
for the partial partition functions q and q∗ of each chain in (2.4) and (2.5).

3. Numerical Method
Since the model with excluded volume interactions is not amenable to simple closed-form solutions, we turn to numerical
solutions. The goal is to evaluate the total free energy H(F ) and average segment density ⟨ρ̂(x;F )⟩. Our numerical method
has the following steps:

1. We first generate an initial field w(x) = w0(x). The initial guess can be based on heuristics when possible.
2. We next solve for the average segment density ⟨ρ̂(x;F )⟩ – using q and q∗ obtained by solving (2.4) and (2.5) with the

given w(x) – and the total free energy H(F ) using (2.30).
3. The field w is updated using (2.31) as w(x) = u0⟨ρ̂(x;F )⟩.
4. In turn, we update ⟨ρ̂(x;F )⟩ and H(F ) as above.

This iteration continues until we reach convergence, which we define as a relative change in the total free energy of less than
0.1%.

For the solution of q and q∗ in (2.4) and (2.5), we use the finite element method (FEM) in the open-source FEniCS framework
[78]. The spatial domain is discretized using first-order Lagrange family finite elements. The integration along the chain with
respect to s in (2.4) and in (2.5) is performed using the implicit Crank-Nicholson finite difference method with 100 steps for
s ∈ (0, 1). We test convergence of the FEM discretization as in Figure 5(b).

While the RVE averaging nominally requires only 8 chains, these chains interact not only with each other, but also with other
chains that are not contained in the RVE. To account for this, we use periodic images of the RVE; we find that one image on each
face of the cubic RVE is sufficient, giving us 27 cubes over which we must perform various integrations; Figure 5(a) shows a
schematic projection of this in 2-d, where the highlighted central RVE is used for the energy calculations. When the deformation
is applied, the image RVEs are deformed following the central RVE. Similarly, w(x) is defined over the larger cluster of RVEs
for performing, but need only be solved on the central RVE using periodicity.

(a) (b)

Figure 5. (a) Front view schematic of a bigger physical domain in 3-d that consists of 27 RVEs, each with 8 chains. The central 8 chain
RVE (highlighted) is used for the free energy calculation. (b) The convergence of the energy as the mesh is refined, shown by plotting the free
energy of a single chain without external field as a function of mesh size. The converged mesh size of 353 elements is used for the numerical
computations. Note that the saddle point nature of the problem can lead to non-monotonic convergence.

4. Elastic Response with Excluded Volume Interactions
In the calculations reported here, we use the following model parameters: total chain contour length L = 0.12µm, number of
polymer segments in single chain N = 100, excluded volume parameter u0 = 0.005 vseg where vseg = a3 is the volume of
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an individual monomer segment, and temperature T = 303K. This choice of u0 gives an excluded cube with side 0.17a, and
corresponds to the Flory-Huggins interaction parameter χ = 0.4975, using u0 = (1−2χ)vseg . This characterizes a good solvent
that is very close to the Θ-point [54, 58, 79, 80].

For the numerical calculations, larger values of u0 in 3-d require an excessively fine mesh to converge; however, the calculations
described below qualitatively agree with 2-d calculations – where much larger values of u0 can be used – and with a few
representative 3-d calculations that were conducted with a larger value of u0 and a very fine mesh.

4.A. Identifying the Stress-Free Free Energy Minimizing State
We first note that without excluded volume effects, all models based on the Gaussian chain approximation would predict that the
polymer network shrinks to a point (F = 0) because that would maximize the configurational entropy of the chain. Therefore, as
we add excluded volume effects, we find that the equilibrium – stress-free or minimum energy – volume of the polymer network
RVE increases. Specifically, the equilibrium state is achieved as a balance between the competing effects of entropic shrinkage
and excluded volume repulsion between monomers; [81, 82] examine related issues in greater depth.

We denote the initial side of the cubic RVE by L0
uc := 2aN1/2/

√
3, where aN1/2 is the RMS average diameter of an

unconstrained chain, and the pre-factor accounts for the geometry of the chain aligned along the diagonal of the RVE. However,
we emphasize that this is not the free energy minimizing state, i.e., it is not stress-free, in the presence of excluded volume
interactions. To this initial state, we apply a deformation of the form F = λI , and compute the free energy for various values of
λ. Figure 6 shows the total free energy H as a function of λ = Luc/L

0
uc for u0 = 0.001 vseg and u0 = 0.005 vseg . We find that

the stress-free stretches, i.e. the free-energy minimizing stretches, for u0 = 0.001 vseg and u0 = 0.005 vseg are respectively at
λ = 0.7 and λ = 1 respectively. The large increase in the equilibrium volume of the polymer network system with an increase
in the excluded volume parameter u0 is consistent with the phenomena of equilibrium swelling for polymeric gels [83–86].

In all of the subsequent calculations discussed below, we set the undeformed state to correspond to the free energy minimizing
stress-free state.

Figure 6. The total free energy as a function of the relative stretch for u0 = 0.001 vseg and u0 = 0.005 vseg .

4.B. Volumetric and Shear Response, and Near-Incompressibility
We use the strain energy density W (F ) to obtain the mesoscale elastic response using nonlinear elasticity; specifically, (2.16)
and (2.17) are used to obtain the stress-stretch response and the elastic moduli respectively. We assume below that the network
can be treated as approximately isotropic despite the 8-chain model.

To obtain the bulk and shear moduli, we impose deformations of the form:

Fv =

λ 0 0
0 λ 0
0 0 λ

 , Fs =

1 κs 0
0 1 0
0 0 1

 . (4.1)
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The bulk and shear moduli, K and G, respectively can be computed using:

K =
1

9

∂2W

∂λ2

∣∣∣
λ≈1

, G =
∂2W

∂κ2
s

∣∣∣
κs≈0

. (4.2)

We find K = 52.06kPa and G = 0.60kPa. Using isotropic linearized elasticity, this gives the Poisson’s ratio ν =
3K − 2G

6K + 2G
=

0.4943 and the elastic modulus E =
9KG

3K +G
= 1.79kPa. These elastic moduli are consistent with polymer network gels

[22, 87–94]. We highlight that K is 2 orders of magnitude larger than G, and ν is very close to the incompressible limit of 0.5.

We next examine the shear stress vs. shear strain curve. In principle, the shear stress can be computed using τ =
∂W

∂κs
. To

avoid a lot of noise from numerical differentiation, we fit W by a polynomial and then differentiate the polynomial to obtain the
curve shown in Figure 7.

Figure 7. Shear stress τ vs. shear strain κs in simple shear. The segment density for the RVE at various stretches are shown in the insets.
We notice that the chains have higher concentrations at the ends when the deformation is small, but are more uniformly distributed as the
deformation increases. Note that the RVE itself does not appear to be sheared because the chain-averaging approach aligns the averaging RVE
along the principal directions that correspond to the maximum and minimum elongation directions (Fig. 2).

4.C. Extensional Response: Emergent Strain-Softening and Strain-Stiffening
We next examine extensional loading where the deformation has the form:

Fe =

λ1 0 0
0 λ2 0
0 0 λ3

 (4.3)

Here, we consider λ1 as the extensional stretch of interest. We make 2 different choices for the transverse stretches λ2 and λ3:
the “constrained case” where they are constrained such that λ2 = λ3 = 1; and the “volume-preserving case” where they are set to
be volume-preserving such that λ2 = λ3 = λ

− 1
2

1 . Note that the second case is approximately equivalent to having no transverse

stress. To obtain the extensional stress, we use σ =
∂W

∂λ1
. Figure 8 compares the stress-strain response of these cases. We notice

that the constrained case has significantly higher stresses and tangent moduli. Figure 9 shows the evolution of the chain density
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with stretch for the constrained case.

Figure 8. The stress-strain curves for the constrained and volume-preserving extensional loadings. We notice that the stresses and the tangent
moduli are both significantly larger when the system is constrained to undergo deformations that do not preserve the volume.

Figure 9. Extensional stress σ vs. extensional stretch λt for the constrained case from Figure 8. The segment density for the RVE at various
stretches are shown in the insets. As with shearing, we notice that the chains have higher concentrations at the ends when the deformation is
small, but are more uniformly distributed as the deformation increases.

From Figures 8 and 9, we notice that both cases show a pronounced strain-softening and strain-stiffening behavior that is
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characteristic of many real polymer networks such as polymeric gels. However, Gaussian chains do not show such behavior, and
it is typical to use chains with limiting extensibility – such as the inverse Langevin approximation – to model this behavior. Here,
we find that it is a consequence of the competition between the excluded volume parameter and the entropy. Figure 10 shows
the decomposition of the free energy W into entropic Wentropic and excluded volume interaction Winteraction contributions.
We observe that the excluded volume contribution is less than the entropic contribution in both cases. Further, we notice that
Wentropic monotonically increases with λ1 > 1, and is consistent with the stretching of the Gaussian polymer chains; however,
Winteraction monotonically decreases with λ1 > 1, and is consistent with the chains being more oriented, and hence having
fewer excluded volume interactions. We notice that in the approximate range 1.5 < λ1 < 2.5 where we see strain softening, the
decrease in the excluded volume interaction is faster than the rise in the entropic contribution, causing softening. For λ1 > 3,
we have the opposite trend in that the entropy increases faster than the decrease in the excluded volume interaction, causing
stiffening. In summary, strain softening occurs because of the initial decrease in excluded volume interactions, and subsequent
strain stiffening occurs because of the later increase in entropic effects.

(a) Free energy density W vs stretch λ1, with λ2 = λ3 = 1 (b) Free energy density W vs stretch λ1 with λ2 = λ3 = λ
−1/2
1

Figure 10. The free energy W is decomposed into entropic Wentropic and excluded volume interaction Winteraction contributions for the
constrained and volume-preserving cases. The symbols show the simulation results, and the lines show best fits that are differentiated to obtain
stress-strain curves.

4.D. Effect of Chain Length
Figure 11 shows the effect of chain contour length on the elastic moduli of the polymer network. The chain contour length L
is varied from 0.01µm to 0.3µm while keeping N fixed. We observe that both the elastic modulus E and the shear modulus
G decrease with increased chain contour length. An increase in chain contour length corresponds to an increase in the average
molecular weight (Mc) between the cross-links, and these results are consistent with experiments that show that an increase in
Mc corresponds to a decrease in the elastic moduli [95, 96]. The range of elastic and shear moduli obtained using the model by
varying chain contour length is consistent with the experimental values for polymer network soft matter such as elastomers and
polymeric gels [22, 87–94, 97–102].

4.E. Interactions between Deformation and an Excluded Volume Instability
We next examine an instability driven by the increase in the excluded volume parameter. For computational feasability – because
we aim to numerically confirm that the instability is sharp by a large number of calculations near the instability – we focus on 2-d
systems; however, a few representative calculations suggest that 3-d is qualitatively similar. Because it is in 2-d, the undeformed
RVE is a square with 4 chains.

Figure 12 presents the average segment density field for various equi-biaxial stretches and various excluded volume parameter
values. For a fixed RVE stretch of Luc/L

0
uc = 1, where L0

uc =
√
2 aN1/2 in 2-d, we observe an instability at u0 ≈ 0.7 vseg

(vseg = a2 in 2-d), leading to the localization of chains. Physically, the chains strongly repel each other and hence are
highly restricted in the volume available. The instability is symmetry breaking, in that the originally square-symmetric chain
configuration transitions to localize either vertically or horizontally from the original square symmetry; in our numerical
simulations, we find that these occur essentially randomly due to numerical noise. As noted above, the instability is a sharp
transition.

We examine the effect of an imposed equi-biaxial stretch by setting Luc/L
0
uc to 1.5 and 2 respectively. We notice that the

critical values of u0 for the instability are, respectively, u0 ≈ 0.8 vseg and u0 ≈ 1.2 vseg . This coupling between the deformation
and chain localization suggests new routes to obtain patterning in polymer networks.
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Figure 11. Elastic and shear moduli as a function of chain contour length; as expected from polymer theory, these scale as a−3 [103].

Figure 12. Excluded volume-driven instability observed in 2-d, and the effect of equi-biaxial deformation. Each subfigure shows the average
segment density plotted over 9 RVEs, with each subfigure corresponding to different values of biaxial stretch Luc/L

0
ucand u0. The instability

corresponds to a sharp transition in the chain configuration: it goes from being fairly uniform away from the crosslinking point to being
concentrated along the horizontal and vertical directions.

As the stretch increases, the critical value of the excluded volume parameter at which the instability occurs also increases.

5. Discussion
We have used the statistical field theory of polymers in combination with the 8-chain network averaging approach to study
the mechanical response of polymer networks. The framework of polymer field theory provides a physics-based approach to
accounting for excluded volume interactions, which are imposed phenomenologically in micromechanical models. In the absence
of excluded volume interactions, we find that that the closed-form orientationally-averaged elastic response matches with the
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classical rubber elasticity [72]. With excluded volume effects, self-consistent numerical solutions using finite elements find that
the predicted elastic moduli are in line with typical polymer network gels; particularly, the linearized Poisson’s ratio ν ≃ 0.4943,
which is very close to the incompressible limit ν → 0.5, without a phenomenological imposition of incompressibility. Though
the equilibrium state depends on the value of u0, the incompressible behavior is independent of the specific value of u0 for the
values studied here. This can be physically understood by considering that ν is computed around the equilibrium stress-free state.
Due to entropic effects, the chains tend to reduce their end-to-end distance and would collapse to a point, while the excluded
volume effects prevent the chains from collapsing completely. The equilibrium state is achieved when these opposing effects
balance out. Around this equilibrium state, we find ν ≃ 0.5, which reflects the role of the solvent in preventing further reduction
in volume. Despite the seeming presence of voids or open space in the density fields, the chains are constrained due to the
excluded volume interactions; the voids will be occupied by the solvent which makes the system close to incompressible since
the solvent cannot leave the polymer network upon deformation. This is consistent with the results of [104], wherein it was
found that ν ≃ 0.5 at short times when the solvent has not had time to diffuse out of the polymer network; at longer times, the
solvent diffuses out and the long-time equilibrium value of ν depends on the shear modulus. While we have not considered this
time-dependent behavior here, it is related to similar effects in poromechanics, namely the Terzaghi and Mandel model problems,
wherein the stress response is closely tied to the drainage of the pore fluid [105–109].

Another interesting finding is that, despite the harmonic Gaussian chain as a starting point, there is an emergent strain-
softening and strain-stiffening response that is characteristic of real polymer network gels, driven by the interplay between the
excluded volume interactions and the entropy; it does not require chains with limiting extensibility – such as the inverse Langevin
approximation – to model this behavior. We also we find the emergence of a deformation-sensitive localization instability at
large values of the excluded volume parameter.

A natural question for future is to examine the interplay between chain-scale instabilities such as microbuckling [110–112]
and the network-scale instabilities observed here. We highlight, however, that these examples of instabilities are in fibrous
networks, and it is possible that such instabilities occur here because of the regular network structure that has been assumed
and will not appear in random networks. An important challenge, however, is that the isolated harmonic Gaussian chain does
not display buckling or other instabilities; other nonlinear chain models are required to capture this behavior. Further, as noted
in [8], electrical field interactions provide an effective compressive stiffness, and can induce new types of instabilities [12].
Incorporating chain models that go beyond the Gaussian approximation in polymer field theory is an interesting theoretical
question. Along similar lines, while we capture strain stiffening and strain softening without the use of a chain model with
limiting extensibility – such as the inverse Langevin model – it would be interesting to incorporate such models in polymer field
theory to enable studying the interplay between entropic, excluded volume, and limited extensibility effects.

The concept of chain topology or entanglement is an important aspect that is not taken into consideration in this study. As
highlighted in [73, 74], these effects can play a significant role in the response of polymer networks. The mean-field framework
employed in this study is unable to account for such effects directly. However, our inclusion of excluded volume effects provides
some insight into the effects of entanglement. Additionally, we have observed that even without accounting for entanglements,
excluded volume effects give rise to many interesting physical characteristics that are relevant to the response of real polymer
networks. It should be noted that while entanglements are crucial for large deformation response, the linearized properties such
as the Poisson’s ratio are expected to be relatively unaltered.

Code Availability
A version of the code developed for this work is available at
https://github.com/pkhandag/polymer-network.git
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